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Geometrical confinements and depletion interactions
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In the system with two large spheres confined between two parallel plates, there are depletion interactions
between the two large spheres and between one large sphere and the closely placed plate. Obviously, the
depletion interactions exerted on one large sphere will be strongly affected by the presence of the closely
placed plate or the other large sphere. This prediction is confirmed by the numerical results obtained through
the acceptance ratio method (ARM) or density integration method (DIM), i.e., they are strengthened when two
large spheres are contacted. Furthermore, it is found that the influences on the depletion forces are also
sensitive to the angle of the centers’ connection line between the two large spheres and the confining walls. In
addition, the numerical results show that the total depletion force exerted on one large sphere from both the
other large sphere and the closely placed plate can be determined through ARM or DIM from the interactions
between the two large spheres or between one large sphere and the corresponding closely placed plate.
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It is well known that the depletion forces play very im-
portant roles in the colloidal suspensions [1-4]. Many inter-
esting results on depletion interactions have been obtained
through computer simulations [5-7], theory analyses [8—14],
and experimental measurements [ 15-18]. These studies have
significantly improved our understanding of the structure and
the equilibrium behavior of the hard-sphere fluids. In fact,
based on the geometrical consideration, the mechanism of
depletion forces was firstly proposed by Asakura and
Oosawa (AO) [1]. Recent investigations show that the deple-
tion force comes from the unbalanced osmotic pressure be-
tween the two large spheres and the relation between the
depletion forces and geometrical factors is very complex
[2-4]. As we know, immersed in a fluid of small spheres, the
depletion forces between two large spheres or between a
large sphere and a closely placed plate are well studied
[5-7]. On the other hand, the effect of the geometrical con-
finement on the depletion interaction is currently interesting
[19-23]. In Refs. [22,23], the depletion interactions between
two large spheres, which are placed in the middle plane of
the two plates, in which the pair distance vector of the two
large spheres is parallel to the wall, were studied, and the
results show that the depletion interaction is strongly af-
fected. It is found that the depletion interactions of a large
sphere and a plate between two large spheres are also af-
fected by another closely located large sphere. So it will be
better if the study on the relation of the depletion force and
geometrical factors is carried out in the context including the
influences from both the plates and the closely placed large
sphere. Fortunately, we can accomplish this aim through an
interesting model discussed in this paper.

The model considered here consists of two large spheres
A and B of radius R immersed in a fluid of small spheres of
radius r confined between two parallel plates P1 and P2 [see
Figs. 1(a) and 1(b)]. Obviously there are depletion interac-
tions between the two large spheres A and B, or between the
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large sphere A (or B) and the plate P1 (or P2). When the two
large spheres are closely placed, the depletion force between
them will play a dominating role; however, the depletion
force between the large sphere A (or B) and the closely
placed plate P1 (or P2) will gradually surpass the initial
depletion force when both A and B are moved to P1 and P2
respectively. One may think that this model is very simple,
and take it for granted that the depletion force between A and
B counteracts to that between A (or B) and P1 (or P2). Based
on the followed two factors, we do not think that the case is
as simple as that: Not only is the depletion force between the
two large spheres affected by the presence of the two plates,
but the depletion force between the large sphere A (or B) and
the corresponding closely placed plate P1 (or P2) is affected
due to the presence of the other large sphere B (or A). To
demonstrate the influence on the depletion interactions from
the geometrical factors, further investigations on this simple
model are needed. Usually the depletion force is determined
through the density integration method (DIM) or the accep-
tance ratio method (ARM). To make our conclusions cred-
ible, both DIM and ARM are used in our investigations.

As is known, the hard-sphere mixture can be character-
ized by the following pair potentials:

d) =
“d=1, D>d,

. (1)
where D is the distance between two spheres of diameters o;
and o;. The force exerted by a small sphere on a large sphere
can then be written as kzT8(D—d;;). Consequently, the vol-
ume integral that gives the small-sphere force acting on each
large sphere reduces to a surface integral [7,10],

-

f=—kgT f p(S)n ds, ()
N

where kj is the Boltzmann’s constant and T the temperature,
# is the outward normal unit vector at the surface, p(S) is the
contact density of small spheres on the surface of the large-
sphere, and dS is an infinitesimal area element on the sur-
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FIG. 1. (Color online) Schematic representa-
tion of the model considered in this paper. & and
H measure the minimal distances between the

face. For the symmetrical arrangements considered here,
only f, is nonzero, and is given by

fo=—2mkgT(R +1)? f p(R +r,0)cos Osin 046,  (3)

where the integration part I=[p(R+r, 6)cos 6 sin 046 is usu-
ally obtained according to the following practice by extrapo-
lating data near contact: The space around the large sphere is
divided into shells of thickness d, 2d,..., etc. By evaluating
I{Z cos 6;), where the sum is over all particles in shell i and
the brackets denote a thermal average, the force can be ob-
tained by extrapolating /; to d=0 using the spline method
[6,7]. On the other hand, the depletion force can also be
determined through the differential of the depletion potential,
which can be conveniently obtained through the ARM intro-
duced by Bennett [24], and details of the ARM and its imple-
mentation can be found in Refs. [7,25-27]. For ARM, two
systems of the hard-sphere fluid in an external potential char-
acterized by two large spheres or a large sphere and a closely
placed plate should be considered. If the potential and the
partition function of the two systems are V;,Q, and V,,0,
respectively, the free energy difference between these two
systems is given by
Nio

gz—ln LBV, = Vo) + C) 1y Mo
Qo (fl-B(V,=Vy) = C]), Noi’
(4)

where C is a constant, B=(kzT)~!, Ny, is the number of
samples drawn out from N simulated samples, which is gen-
erated with the potential V|, where V; is not infinite, Ny, is
the number of samples drawn out from N simulated samples,
which is generated with potential V| where V|, is not infinite.

To get the influences on the depletion interactions from
the geometrical confinements through this special model, a
simulated cell of size L, X L, X L, with two boundless hard
plates placed at x;=0 and x,=L, is considered here [see Figs.
1(a) and 1(b)]. In the cell, the two large spheres A and B are
symmetrically placed besides the center plane P of the two

BAF =—-1In

two large spheres A and B, between A (or B) and
P1 (or P2) respectively. The dashed zones are the
forbidden regions of the small spheres. The dot-
ted line P is the center plane of the two plates P1
and P2.

plates P1 and P2; furthermore, the connecting line of the
centers of A and B is vertical to the plates P1 and P2. Ob-
viously, the small hard spheres are randomly distributed in
the cell to form a hard-sphere fluid. In this paper, the size
ratio R/r is taken to be 5, and the number of small spheres N
is determined by the given volume fraction 7, defined as
n=NV,/(V-2V,), where V=L, X L, XL, is the total volume
of the simulated cell, V,=4/3(mr?) stands for the volume of
a small sphere, and V,=4/3(@R?) is the volume of a large
sphere. The law of the depletion potential and the depletion
force between the two large-spheres, or between the large-
sphere A (or B) and the plate P1 (or P2), is usually described
as a function of the distance & or H, where h is the distance
between the surfaces of the two large spheres, H the distance
between the large sphere A (or B) and P1 (or P2). Obviously
the relation between h and H is given by

h=L,—4R-2H. (5)

In all the process of our simulations, the two large spheres A
and B are moved in the contrary direction towards the plates
P1 and P2 with the same magnitude value at the same time
respectively. To avoid finite size effect, we take L,=20r,
L,=20r, and L,=32r, and perform the simulations in the
systems with volume fractions 7=0.116, 0.229, and 0.341.
When the parameters 7, L,, Ly, L, and the initial configura-
tion of the spheres are given, the configurations of the small
spheres are sampled according to the Metropolis algorithm
[28] with the two large spheres fixed at a separation k. Each
small sphere is orderly chosen involving a trial displacement
and the new position is accepted as long as it does not result
in an overlap with the large spheres, the other small spheres,
and the plates. To take the two plates into account, the fixed
boundary condition is used in the x direction, but the periodic
boundary conditions in the y and z directions. Meanwhile,
the magnitude of the maximum random displacement is ad-
justed so that the overall acceptance ratio is about 0.3 to
~0.5. In our simulations, 1.0X 10> Monte Carlo steps
(MCS) are used for equilibrium of the system and other
3.0 X 10° MCS to collect data. Through ARM, in the calcu-
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FIG. 2. (a) Depletion potentials between the two large spheres confined between the two plates in different volume fractions. (b) The
depletion forces corresponding to the depletion potentials shown in (a). The depletion interactions are affected by the presence of the two

plates.

lation of the depletion potential between the two large
spheres A and B, or between the large sphere A (or B) and
the plate P1 (or P2), the separation between them (4 or H) is
changed and the free energy differences between different
distances are obtained by fixing the potential zero to a refer-
ence point. In the present study, including the depletion po-
tentials between the two large spheres A and B, and between
the large sphere A and plate P1 (or P2), the contact of A and
B (or h=0 and H=3) is chosen to be the zero point of energy.
Obviously, this choice will not affect the depletion force be-
cause it is the differential of the depletion potential.

In this way, all the depletion potentials and the corre-
sponding depletion forces between the two large spheres A
and B, and between A (or B) and P1 (or P2) in the systems
mentioned above, are obtained and shown in Fig. 2 and Fig.
3 respectively. In order to make a comparison with our
model to the unconfined systems that were well studied
[5-7], the depletion interactions between two large spheres,

a o

depletion potential(k,T)
(

or between a large sphere and the closely placed plate, in
systems without geometrical confinements are demonstrated
in Fig. 4 and Fig. 5 respectively. In Figs. 2-5, the depletion
potentials F in units of kzT" and the corresponding depletion
forces in units of mRpkyT are plotted as a function of & or H;
here, p is the number density of small spheres, the length &
or H is measured in units of 2r. In these figures, the solid
lines, the dashed lines, and the dotted lines describe the
depletion potentials or depletion forces with volume fraction
7n=0.116, 0.229, and 0.341 respectively. We firstly consider
the case of #=0.229 in Fig. 2(a), described by the dashed
line, and get that the depletion potential between the two
large spheres increases with the increasing A. After it gets to
its extremum near h=0.8, a little decrease appears. Com-
pared with Fig. 4(a), in the region of 0 <<h <3, it behaves as
the similar trend of the depletion potential between two large
spheres without geometrical confinement. As h keeps in-
creasing, the interaction between A and B is weakened; how-
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FIG. 3. (a) Depletion potentials between the large sphere A (or B) and the plate P1 (or P2) in different volume fractions. (b) The
depletion forces corresponding to the depletion potentials shown in (a). The depletion interactions are affected by the presence of the large

sphere B (or A).
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FIG. 4. (a) Depletion potentials and (b) the corresponding depletion forces between two large spheres in different volume fractions
without other geometrical factors. The size ratio is R/r=35. h is the distance between the two large spheres, and 2=0 is chosen to be the zero

point of energy.

ever, at this time, the distance H is small enough for A (or B)
and P1 (or P2) to form another interacting system, so the
depletion potential increases rapidly and get to a larger ex-
tremum at 2=5.0; then it decreases rapidly, and finally gets
to its minimum at 2=6.0. It tells us clearly that, according to
the value of /4, the depletion interaction can be roughly di-
vided into two parts: From O to 3, it mainly describes the
depletion potential between A and B, and from 3 to 6, it is
that between A (or B) and P1 (or P2). If we compare Fig.
2(a) and Fig. 4(a) in more detail, it is easy to find the influ-
ence on the depletion potential from the plates P1 and P2;
for the dashed lines, the extremum value shown in Fig. 2(a)
is about 2.5, which is larger than that shown in Fig. 4(a);
furthermore, corresponding to the extremum mentioned
above at h=0.8, it is also larger than that shown in Fig. 4(a).
So the position and the magnitude of the extremum of the
depletion potential in our model are different from that in the
unconfined systems. In other words, both the position and
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value of the extremum of the depletion potential are affected
by the presence of the two plates. The same trend is also
found in the systems of 7=0.341, 0.116 respectively. The
influence on the depletion interactions from the geometrical
factors is further confirmed through the corresponding deple-
tion forces shown in Fig. 2(b). Comparing Figs. 2(b) with
4(b), for the dashed line, it is normal that the absolute value
of the depletion force of our model is smaller than that with-
out geometrical confinements show in Fig. 4(b), because the
depletion force between A and B counteracts that between A
(or B) and P1 (or P2), but the abnormal behavior is found as
h—0, i.e., the absolute value of the depletion force between
the two large spheres is larger than that without geometrical
confinements when 2 — 0. The abnormal behavior as 7—0
exposes the influence on the depletion interaction from the
geometrical confinements. The same phenomenon is found in
the solid and dotted lines when 42— 0. Comparing Fig. 3 with
Fig. 5, we find that the depletion interactions between A (or
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FIG. 5. (a) Depletion potentials and (b) the corresponding depletion forces between a large sphere and a closely placed plate in different
volume fractions without other geometrical factors. The size ratio is R/r=5. H is the distance between the large sphere and the plate, and

H=0 is chosen to be the zero point of energy.
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TABLE 1. The contact depletion forces in units of mRpkgT be-
tween two large spheres in different configurations.

Confined cases

Volume Unconfined Perpendicular Tilted
fraction cases configuration configuration
7=0.116 —1.43608 —-1.66465 -1.68312
7=0.229 —-1.82251 —2.03405 —2.10882
7=0.341 -2.41632 —2.53760 —2.60002
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FIG. 6. Depletion force exerted on the large sphere A (or B) in
the system of #=0.229. The solid and dashed lines are for the
depletion forces determined through DIM and ARM respectively.

B) and P1 (or P2) are also affected by the presence of the
other large sphere B (or A). As the zero potential is set at
H=3; therefore, the depletion potentials between A (or B)
and P1 (or P2) shown in Fig. 3(a) are negative and different
from that shown in Fig. 5(a), which H=0 is set as the zero
potential. Compared Fig. 3(b) with Fig. 5(b), it is easy to find
that the absolute values of the depletion forces in the solid,
dashed, and dotted lines are larger than that in Fig. 5(b) when
H— 0. Now we see that the depletion forces in our model are
really affected by the presence of the two plates or the other
large sphere; They are strengthened when two large spheres
are very closely placed to each other A=0 or to the plate
H=0, but are weakened if they are placed with a little dis-
tance. This point is very interesting and useful for us to get
the stability of the confined colloidal system: instead of dis-
tributed randomly in the colloidal suspension, a large-sphere
would rather stays closely to the plate or closely to the other
large-spheres. Furthermore, though the depletion potentials
shown in Fig. 3(a) are different to that shown in Fig. 2(a), the
depletion forces between A and B shown in Fig. 2(b) are
symmetrical to that between A (or B) and P1 (or P2) shown
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in Fig. 3(b). Comparing Fig. 2(b) with Fig. 3(b), it is reason-
able for us to suppose that the depletion force determined
through ARM is the total force acted on the large sphere. As
we know, for DIM, the depletion force is determined through
the surface integral of the corresponding large sphere; there-
fore, it reflects the composition interactions exerted on it. So
it is reasonable to confirm this conjecture and the conclusion
about the influences on depletion interaction from the geo-
metrical confinements by comparing the depletion force on A
(or B) determined through both ARM and DIM. The deple-
tion forces determined through both DIM and ARM are
shown in Fig. 6, from which the conjecture and the conclu-
sions are confirmed.

Obviously, above discussions is about the case that the
pair distance vector of the two large spheres is perpendicular
to the plates. It is useful to study the effect of the angle
between the distance vector and the wall « [see Fig. 1(c)].
For simplicity, we consider here the case with a small angle
=5 and the results about the depletion forces and geo-
metrical confinements are shown in Fig. 7. It shows that the
geometrical effect on the depletion interaction is still notable
for the off-perpendicular pair-wall configurations.

As the small differences of the contact depletion forces
between the confined and unconfined configurations cannot
be easily read from the graph intercepts, the contact deple-
tion forces in different configurations are given in Table I.
From Table I, one can understand that the influences on the
depletion forces are more sensitive to the angle between the
centers’ connection line of the two large spheres and the
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FIG. 7. (a) Depletion potentials and (b) the corresponding depletion forces between the two large spheres when a=5°.
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confining walls than to that of the volume fraction. We be-
lieve that, in both the perpendicular and the tilted cases, the
anomalous increase of the contact forces between the two
large spheres comes from the confining walls, since the dis-
tribution of the small spheres around the large spheres is
different from that without the two confining walls.

As a whole, we have studied the depletion potentials and
depletion forces in the model through Monte Carlo simula-
tions. From above discussion, we have shown that the total
depletion force exerted on one large sphere from both the
other large sphere and the closely placed plate can be deter-
mined through ARM or DIM from the interactions between
the two large spheres or between one large sphere and the

PHYSICAL REVIEW E 73, 061403 (2006)

corresponding closely placed plate. Though the depletion
forces between the two spheres and between a large sphere
and the corresponding closely placed plate are counteracted,
the total force is strengthened when the distance between the
two large spheres 7—0 or the distance between a large
sphere and the corresponding plate H— 0. It tells us clearly
that the depletion interaction on a large sphere is strongly
affected by the presence of geometrical confinements.
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